$$\dots \rightarrow \mathbf{0} \rightarrow \mathbb{Z}^{r_X} \xrightarrow{\partial_2}_{5_X} \mathbb{Z}^N \xrightarrow{\partial_1}_{H_Z} \widehat{\mathbb{T}}^{r_Z} \cong \mathbb{Z}^{r_Z} \rightarrow \mathbf{0} \rightarrow \dots$$

Quantum error correction with rotors and torsion

Samo Novák COSMIQ Inria Paris

Journées C² April 2025

× p

ę.,

Coker (Pr

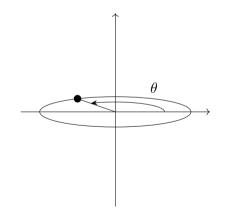
Rotor

We are used to **qubits** (two basis states), and perhaps **qudits** (*d* basis states). What happens when we send $d \to \infty$ (heuristically) ?

Definition (rotor [VCT23])

A quantum **rotor** is a system whose states we describe using the **circle** group

$$\mathbb{T}:=\mathbb{R}/_{2\pi\mathbb{Z}},$$



Rotor

We are used to **qubits** (two basis states), and perhaps **qudits** (*d* basis states). What happens when we send $d \to \infty$ (heuristically) ?

Definition (rotor [VCT23])

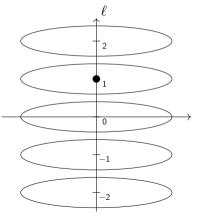
A quantum **rotor** is a system whose states we describe using the **circle** group

$$\mathbb{T} := \mathbb{R}_{2\pi\mathbb{Z}}$$

and by its dual

$$\widehat{\mathbb{T}}\cong\mathbb{Z}.$$

(We won't worry about the duality today.)



From now on, we focus on one of these spaces: the one described by \mathbb{Z} . Results on Pontryagin duality allow this (but we won't go into the details).

From now on, we focus on one of these spaces: the one described by \mathbb{Z} . Results on Pontryagin duality allow this (but we won't go into the details).

If *N* qubits, the state space is $(\mathbb{C}^2)^{\otimes N}$, and we represent it by its basis \mathbb{Z}_2^N $(\mathbb{Z}_2 := \mathbb{Z}_{2\mathbb{Z}})$.

From now on, we focus on one of these spaces: the one described by \mathbb{Z} . Results on Pontryagin duality allow this (but we won't go into the details).

If *N* qubits, the state space is $(\mathbb{C}^2)^{\otimes N}$, and we represent it by its basis \mathbb{Z}_2^N $(\mathbb{Z}_2 := \mathbb{Z}/_{2\mathbb{Z}})$. To study linear codes, we use its natural \mathbb{Z}_2 -vector space structure.

From now on, we focus on one of these spaces: the one described by \mathbb{Z} . Results on Pontryagin duality allow this (but we won't go into the details).

If *N* qubits, the state space is $(\mathbb{C}^2)^{\otimes N}$, and we represent it by its basis \mathbb{Z}_2^N $(\mathbb{Z}_2 := \mathbb{Z}/_{2\mathbb{Z}})$. To study linear codes, we use its natural \mathbb{Z}_2 -vector space structure.

Same idea for **rotors**: *N* rotors **described by** \mathbb{Z}^N .

From now on, we focus on one of these spaces: the one described by \mathbb{Z} . Results on Pontryagin duality allow this (but we won't go into the details).

If *N* qubits, the state space is $(\mathbb{C}^2)^{\otimes N}$, and we represent it by its basis \mathbb{Z}_2^N $(\mathbb{Z}_2 := \mathbb{Z}/_{2\mathbb{Z}})$. To study linear codes, we use its natural \mathbb{Z}_2 -vector space structure.

Same idea for **rotors**: *N* rotors **described by** \mathbb{Z}^N .

But wait!

Above, \mathbb{Z}_2 is a **field** and thus \mathbb{Z}_2^N is a **vector space**. Nice

From now on, we focus on one of these spaces: the one described by \mathbb{Z} . Results on Pontryagin duality allow this (but we won't go into the details).

If *N* qubits, the state space is $(\mathbb{C}^2)^{\otimes N}$, and we represent it by its basis \mathbb{Z}_2^N $(\mathbb{Z}_2 := \mathbb{Z}/_{2\mathbb{Z}})$. To study linear codes, we use its natural \mathbb{Z}_2 -vector space structure.

Same idea for **rotors**: *N* rotors **described by** \mathbb{Z}^N .

But wait!

Above, \mathbb{Z}_2 is a **field** and thus \mathbb{Z}_2^N is a **vector space**. Nice eHowever, the ring \mathbb{Z} is **not** a field, and \mathbb{Z}^N is **not** a vector space!!!

From now on, we focus on one of these spaces: the one described by \mathbb{Z} . Results on Pontryagin duality allow this (but we won't go into the details).

If *N* qubits, the state space is $(\mathbb{C}^2)^{\otimes N}$, and we represent it by its basis \mathbb{Z}_2^N $(\mathbb{Z}_2 := \mathbb{Z}/_{2\mathbb{Z}})$. To study linear codes, we use its natural \mathbb{Z}_2 -vector space structure.

Same idea for **rotors**: *N* rotors **described by** \mathbb{Z}^N .

But wait!

Above, \mathbb{Z}_2 is a **field** and thus \mathbb{Z}_2^N is a **vector space**. Nice \bigcirc

However, the ring \mathbb{Z} is **not** a field, and \mathbb{Z}^N is **not** a vector space!!! Instead, \mathbb{Z}^N is a \mathbb{Z} -module.

From now on, we focus on one of these spaces: the one described by \mathbb{Z} . Results on Pontryagin duality allow this (but we won't go into the details).

If *N* qubits, the state space is $(\mathbb{C}^2)^{\otimes N}$, and we represent it by its basis \mathbb{Z}_2^N $(\mathbb{Z}_2 := \mathbb{Z}/_{2\mathbb{Z}})$. To study linear codes, we use its natural \mathbb{Z}_2 -vector space structure.

Same idea for **rotors**: *N* rotors **described by** \mathbb{Z}^N .

But wait!

Above, \mathbb{Z}_2 is a **field** and thus \mathbb{Z}_2^N is a **vector space**. Nice \bigcirc

However, the ring \mathbb{Z} is **not** a field, and \mathbb{Z}^N is **not** a vector space!!! Instead, \mathbb{Z}^N is a \mathbb{Z} -module.

Conclusion: need more general machinery, unexpected phenomena happen: torsion.

Motivation: Building qubit systems from rotors

This is something we **can build** and use, so it's worth studying what it can do. In particular, we can use physical **rotors** to **encode other kinds** of systems (e.g. **qubits**).

Motivation: Building qubit systems from rotors

This is something we **can build** and use, so it's worth studying what it can do. In particular, we can use physical **rotors** to **encode other kinds** of systems (e.g. **qubits**).

Motivation: Revealing subtleties

The more general machinery reveals **subtle details** that are also present, but **hidden**, in more **conventional** constructions.

Escape-velocity intro to module theory

Let *R* be a ring. Examples: \mathbb{Z} , $\mathbb{Z}_{42} := \mathbb{Z}_{42\mathbb{Z}}$, \mathbb{R} (field).

Escape-velocity intro to module theory

Let *R* be a ring. Examples: \mathbb{Z} , $\mathbb{Z}_{42} \coloneqq \mathbb{Z}_{42\mathbb{Z}}$, \mathbb{R} (field).

Definition (module)

An *R*-module M is an abelian group with a compatible action of R (scalar multiplication).

Generalizes vector spaces: a vector space is by definition a module over a field.

Escape-velocity intro to module theory

Let *R* be a ring. Examples: \mathbb{Z} , $\mathbb{Z}_{42} \coloneqq \mathbb{Z}_{42\mathbb{Z}}$, \mathbb{R} (field).

Definition (module)

An *R*-module M is an abelian group with a compatible action of R (scalar multiplication).

Generalizes vector spaces: a vector space is by definition a module over a field.

Idea

If R is **not a field**, sometimes **weird stuff** happens.

Torsion (algebra)

In this talk, we **take** $R = \mathbb{Z}$, which is a PID (a nice kind of ring).

Torsion (algebra)

In this talk, we **take** $R = \mathbb{Z}$, which is a PID (a nice kind of ring).

Definition (torsion; simplified)

Let *M* be a \mathbb{Z} -module. If there is $\underline{v} \in M$ and a **nonzero** $n \in \mathbb{Z}$, such that

 $n \cdot \underline{v} = \underline{0}$

then \underline{v} is a **torsion** element. The set of such \underline{v} is a **torsion submodule**.

Torsion (algebra)

In this talk, we **take** $R = \mathbb{Z}$, which is a PID (a nice kind of ring).

Definition (torsion; simplified)

Let *M* be a \mathbb{Z} -module. If there is $\underline{v} \in M$ and a **nonzero** $n \in \mathbb{Z}$, such that

 $n \cdot \underline{v} = \underline{0}$

then \underline{v} is a **torsion** element. The set of such \underline{v} is a **torsion submodule**.

Example

Let
$$M = \mathbb{Z}_2 = \mathbb{Z}_{2\mathbb{Z}} = \{\overline{0}, \overline{1}\}$$
 as \mathbb{Z} -module. Then:

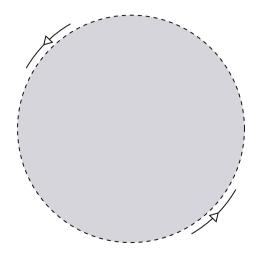
$$4 \cdot \overline{1} = \overline{4 \cdot 1 \pmod{2}} = \overline{0}.$$

The whole \mathbb{Z}_2 is a torsion \mathbb{Z} -module!

Torsion describes a kind of **weirdness** of **topological spaces**.

Torsion describes a kind of **weirdness** of **topological spaces**.

Right: real **projective plane** $\mathbb{RP}^2 = \text{disk}$, but **glue opposite** points of the boundary.

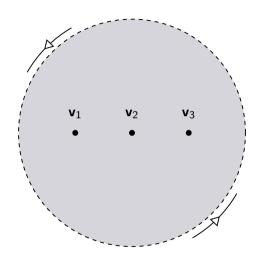


Torsion describes a kind of **weirdness** of **topological spaces**.

Right: real projective plane $\mathbb{RP}^2 = \text{disk}$, but glue opposite points of the boundary.

Cellulation with

• points $\{v_1, \ldots, v_3\}$,

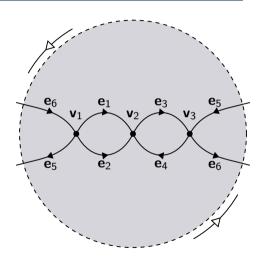


Torsion describes a kind of **weirdness** of **topological spaces**.

Right: real projective plane $\mathbb{RP}^2 = \text{disk}$, but glue opposite points of the boundary.

Cellulation with

- points $\{v_1, \ldots, v_3\}$,
- oriented edges $\{e_1, \ldots, e_6\}$,

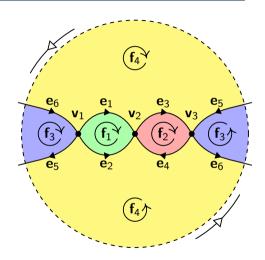


Torsion describes a kind of **weirdness** of **topological spaces**.

Right: real projective plane $\mathbb{RP}^2 = \text{disk}$, but glue opposite points of the boundary.

Cellulation with

- points $\{v_1, \ldots, v_3\}$,
- oriented edges $\{e_1, \ldots, e_6\}$,
- oriented faces $\{f_1, \ldots, f_4\}$.



Torsion describes a kind of **weirdness** of **topological spaces**.

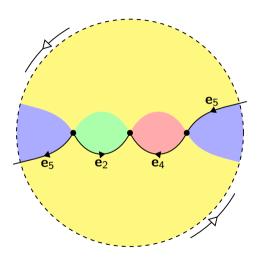
Right: real projective plane $\mathbb{RP}^2 = \text{disk}$, but glue opposite points of the boundary.

Cellulation with

- points $\{v_1, \ldots, v_3\}$,
- oriented edges $\{e_1, \ldots, e_6\}$,
- oriented faces $\{f_1, \ldots, f_4\}$.

Intuition

Torsion, here \mathbb{Z}_2 , corresponds to a cycle which must be traversed multiple times (2) to come back exactly to the same point in the same orientation.



Torsion describes a kind of **weirdness** of **topological spaces**.

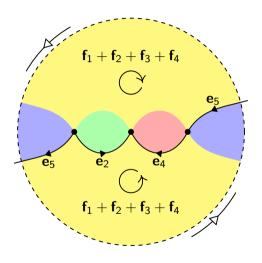
Right: real projective plane $\mathbb{RP}^2 = \text{disk}$, but glue opposite points of the boundary.

Cellulation with

- points $\{v_1, \ldots, v_3\}$,
- oriented edges $\{e_1,\ldots,e_6\}$,
- oriented faces $\{f_1, \ldots, f_4\}$.

More precisely

 $\begin{array}{l} \mbox{Cycle }\underline{x}=-e_2+e_4+e_5 \mbox{ is not a boundary} \\ \mbox{of a face. But its multiple } 2\underline{x} \mbox{ is the} \\ \mbox{boundary of } f_1+f_2+f_3+f_4. \\ \mbox{Thus } \mathbb{Z}_2 \mbox{ torsion.} \end{array}$



Note *linear* structure!

A way to construct a code is to cellulate a topological space and build a chain complex:

Definition (chain complex CSS code)

A chain complex representing a CSS code is:

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$

where im $\partial_2 \subseteq \ker \partial_1$.

A way to construct a code is to cellulate a topological space and build a chain complex:

Definition (chain complex CSS code)

A chain complex representing a CSS code is:

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$

where im $\partial_2 \subseteq \ker \partial_1$. The spaces are:

• $C_2 = \langle \mathbf{f}_1, \dots, \mathbf{f}_{r_X} \rangle_{\mathbb{Z}}$ spanned by faces, corresponding to X-stabilizers,

A way to construct a code is to cellulate a topological space and build a chain complex:

Definition (chain complex CSS code)

A chain complex representing a CSS code is:

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$

where im $\partial_2 \subseteq \ker \partial_1$. The spaces are:

- $C_2 = \langle \mathbf{f}_1, \dots, \mathbf{f}_{r_X} \rangle_{\mathbb{Z}}$ spanned by faces, corresponding to X-stabilizers,
- $C_1 = \langle \mathbf{e}_1, \dots, \mathbf{e}_N \rangle_{\mathbb{Z}}$ spanned by **edges**, corresponding to **physical rotors** (or qubits),

A way to construct a code is to **cellulate** a topological **space** and build a **chain complex**:

Definition (chain complex CSS code)

A chain complex representing a CSS code is:

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$

where im $\partial_2 \subseteq \ker \partial_1$. The spaces are:

- $C_2 = \langle \mathbf{f}_1, \dots, \mathbf{f}_{r_X} \rangle_{\mathbb{Z}}$ spanned by faces, corresponding to X-stabilizers,
- $C_1 = \langle \mathbf{e}_1, \dots, \mathbf{e}_N \rangle_{\mathbb{Z}}$ spanned by **edges**, corresponding to **physical rotors** (or qubits),
- $C_0 = \langle \mathbf{v}_1, \dots, \mathbf{v}_{r_Z} \rangle_{\mathbb{Z}}$ spanned by **vertices**, corresponding to *Z*-syndromes.

A way to construct a code is to cellulate a topological space and build a chain complex:

Definition (chain complex CSS code)

A chain complex representing a CSS code is:

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$

where im $\partial_2 \subseteq \ker \partial_1$. The spaces are:

- $C_2 = \langle f_1, \dots, f_{r_X} \rangle_{\mathbb{Z}}$ spanned by faces, corresponding to X-stabilizers,
- $C_1 = \langle \mathbf{e}_1, \dots, \mathbf{e}_N \rangle_{\mathbb{Z}}$ spanned by **edges**, corresponding to **physical rotors** (or qubits),
- $C_0 = \langle \mathbf{v}_1, \dots, \mathbf{v}_{r_Z} \rangle_{\mathbb{Z}}$ spanned by **vertices**, corresponding to *Z*-syndromes.

The maps ∂_n describe the incidence of *n*-dim cells on their (n-1)-dim boundaries, e.g. $\partial_2(\mathbf{f}_1) = +\mathbf{e}_1 - \mathbf{e}_2$. \mathbf{e}_1

A way to construct a code is to cellulate a topological space and build a chain complex:

Definition (chain complex CSS code)

A chain complex representing a CSS code is:

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$

where im $\partial_2 \subseteq \ker \partial_1$. The spaces are:

- $C_2 = \langle f_1, \dots, f_{r_X} \rangle_{\mathbb{Z}}$ spanned by faces, corresponding to X-stabilizers,
- $C_1 = \langle \mathbf{e}_1, \dots, \mathbf{e}_N \rangle_{\mathbb{Z}}$ spanned by **edges**, corresponding to **physical rotors** (or qubits),
- $C_0 = \langle \mathbf{v}_1, \dots, \mathbf{v}_{r_Z} \rangle_{\mathbb{Z}}$ spanned by **vertices**, corresponding to *Z*-syndromes.

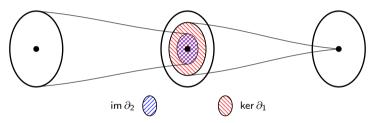
The maps ∂_n describe the incidence of *n*-dim cells on their (n-1)-dim boundaries, e.g. $\partial_2(\mathbf{f}_1) = +\mathbf{e}_1 - \mathbf{e}_2$.

These boundary maps give **parity check matrices** H_X and H_Z .

 \mathbf{e}_1

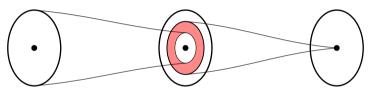
In a chain complex representing a CSS code

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$



In a chain complex representing a CSS code

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$

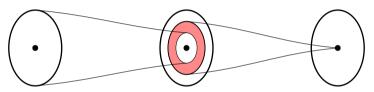


the logical operators are found in the first homology module:

$$H_1 := \frac{\ker \partial_1}{\dim \partial_2}.$$

In a chain complex representing a CSS code

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$



the logical operators are found in the first homology module:

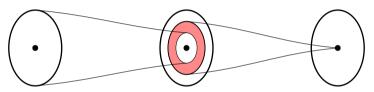
$$H_1 := \frac{\ker \partial_1}{\dim \partial_2}.$$

Recall example

Cycle $\underline{x} = -\mathbf{e}_2 + \mathbf{e}_4 + \mathbf{e}_5$ is **not a boundary** of a face. But its **multiple** $2\underline{x}$ is. Thus \mathbb{Z}_2 torsion.

In a chain complex representing a CSS code

$$C_2 = \mathbb{Z}^{r_X} \xrightarrow{\partial_2 = H_X^\top} C_1 = \mathbb{Z}^N \xrightarrow{\partial_1 = H_Z} C_0 = \mathbb{Z}^{r_Z}$$



the logical operators are found in the first homology module:

$$H_1 := \frac{\ker \partial_1}{\dim \partial_2}.$$

Key idea

Torsion comes from a cycle of edges that is not a boundary, but its multiple is.

This is given by the **image** im ∂_2 .

In the \mathbb{RP}^2 example, the **homology** is $H_1(\mathbb{RP}^2) = \mathbb{Z}_2$, even though it is constructed from rotors (\mathbb{Z}). This is **torsion**.

In the \mathbb{RP}^2 example, the **homology** is $H_1(\mathbb{RP}^2) = \mathbb{Z}_2$, even though it is constructed from rotors (\mathbb{Z}). This is **torsion**.

The \mathbb{Z}_2 means our **rotor** system **encodes a qubit**.

In the \mathbb{RP}^2 example, the **homology** is $H_1(\mathbb{RP}^2) = \mathbb{Z}_2$, even though it is constructed from rotors (\mathbb{Z}). This is **torsion**.

The \mathbb{Z}_2 means our **rotor** system **encodes a qubit**.

Key takeaway

In the general setting of rotors, we can use one kind of system to encode another kind.

In the \mathbb{RP}^2 example, the **homology** is $H_1(\mathbb{RP}^2) = \mathbb{Z}_2$, even though it is constructed from rotors (\mathbb{Z}). This is **torsion**.

The \mathbb{Z}_2 means our **rotor** system **encodes a qubit**.

Key takeaway

In the general setting of rotors, we can use one kind of system to encode another kind.

Example: Klein bottle

A Klein bottle \mathbb{K}^2 has homology

$$H_1(\mathbb{K}^2) = \mathbb{Z} \oplus \mathbb{Z}_2.$$

A rotor code defined on a cellulation of \mathbb{K}^2 encodes a **rotor** and a **qubit**.

In the \mathbb{RP}^2 example, the **homology** is $H_1(\mathbb{RP}^2) = \mathbb{Z}_2$, even though it is constructed from rotors (\mathbb{Z}). This is **torsion**.

The \mathbb{Z}_2 means our **rotor** system **encodes a qubit**.

Key takeaway

In the general setting of rotors, we can use one kind of system to encode another kind.

Example: Klein bottle

A Klein bottle \mathbb{K}^2 has homology

$$H_1(\mathbb{K}^2) = \mathbb{Z} \oplus \mathbb{Z}_2.$$

A rotor code defined on a cellulation of \mathbb{K}^2 encodes a **rotor** and a **qubit**.

Key observation

We can obtain mixed-dimension systems.

$\dots \rightarrow 0 \rightarrow \mathbf{T} \text{ thank}^{a_1} \quad \widehat{\mathbf{T}}^{r_2} \cong \mathbb{Z}^{r_2} \rightarrow 0 \rightarrow \dots$

Quantum error correction with rotors and torsion

Samo Novák COSMIQ Inria Paris

Journées C² April 2025

Bibliography follows.

- Tttrung, Klein bottle made with gnuplot 4.0., https://commons.wikimedia.org/wiki/File:Klein_bottle.svg, July 2006.
- Christophe Vuillot, Alessandro Ciani, and Barbara M. Terhal, *Homological Quantum Rotor Codes: Logical Qubits from Torsion*, September 2023.