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Rotor

We are used to qubits (two basis states), and perhaps qudits (d basis states). What
happens when we send d → ∞ (heuristically) ?

Definition (rotor [VCT23])

A quantum rotor is a system whose states we
describe using the circle group

T := R⧸2πZ,

and by its dual
T̂ ∼= Z.

(We won’t worry about the duality today.)
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Why is this interesting?

Note

From now on, we focus on one of these spaces: the one described by Z. Results on
Pontryagin duality allow this (but we won’t go into the details).

If N qubits, the state space is (C2)⊗N , and we represent it by its basis ZN
2 (Z2 := Z⧸2Z).

To study linear codes, we use its natural Z2-vector space structure.

Same idea for rotors: N rotors described by ZN .

But wait!

Above, Z2 is a field and thus ZN
2 is a vector space. Nice

However, the ring Z is not a field, and ZN is not a vector space!!!
Instead, ZN is a Z-module.

Conclusion: need more general machinery, unexpected phenomena happen: torsion.
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Okay whatever. Why is this REALLY interesting?

Motivation: Building qubit systems from rotors

This is something we can build and use, so it’s worth studying what it can do. In
particular, we can use physical rotors to encode other kinds of systems (e.g. qubits).

Motivation: Revealing subtleties

The more general machinery reveals subtle details that are also present, but hidden, in
more conventional constructions.
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Escape-velocity intro to module theory

Let R be a ring. Examples: Z, Z42 := Z⧸42Z, R (field).

Definition (module)

An R-module M is an abelian group with a compatible action of R (scalar
multiplication).

Generalizes vector spaces: a vector space is by definition a module over a field.

Idea

If R is not a field, sometimes weird stuff happens.
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Torsion (algebra)

In this talk, we take R = Z, which is a PID (a nice kind of ring).

Definition (torsion; simplified)

Let M be a Z-module. If there is v ∈ M and a nonzero n ∈ Z, such that

n · v = 0

then v is a torsion element. The set of such v is a torsion submodule.

Example

Let M = Z2 = Z⧸2Z = {0̄, 1̄} as Z-module. Then:

4 · 1̄ = 4 · 1 (mod 2) = 0̄.

The whole Z2 is a torsion Z-module!
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Torsion (topology): Example of RP2

Torsion describes a kind of weirdness of
topological spaces.

Right: real projective plane RP2 = disk,
but glue opposite points of the boundary.

Cellulation with

• points {v1, . . . , v3},

• oriented edges {e1, . . . , e6},
• oriented faces {f1, . . . , f4}.

Intuition

Torsion, here Z2, corresponds to a cycle
which must be traversed multiple times (2)
to come back exactly to the same point in
the same orientation.

More precisely

Cycle x = −e2 + e4 + e5 is not a boundary
of a face. But its multiple 2x is the
boundary of f1 + f2 + f3 + f4.
Thus Z2 torsion.

v1 v2 v3
e6

e5

e5

e6

e1

e2

e3

e4

f1
⟳

f2

⟳

f3

⟳

f3

⟲
f4

⟳

f4

⟲
f1 + f2 + f3 + f4⟳

f1 + f2 + f3 + f4

⟲

Note linear structure!
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Chain complex: the previous idea in more detail

A way to construct a code is to cellulate a topological space and build a chain complex:

Definition (chain complex CSS code)

A chain complex representing a CSS code is:

C2 = ZrX C1 = ZN C0 = ZrZ
∂2=H⊤

X ∂1=HZ

where im ∂2 ⊆ ker ∂1.

The spaces are:

• C2 = ⟨f1, . . . , frX ⟩Z spanned by faces, corresponding to X -stabilizers,

• C1 = ⟨e1, . . . , eN⟩Z spanned by edges, corresponding to physical rotors (or qubits),

• C0 = ⟨v1, . . . , vrZ ⟩Z spanned by vertices, corresponding to Z -syndromes.

The maps ∂n describe the incidence of n-dim cells
on their (n − 1)-dim boundaries, e.g. ∂2(f1) = +e1 − e2.

e1

e2

f1

⟳

These boundary maps give parity check matrices HX and HZ .
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Encoded logical space: homology

In a chain complex representing a CSS code

C2 = ZrX C1 = ZN C0 = ZrZ
∂2=H⊤

X ∂1=HZ

im ∂2 ker ∂1

the logical operators are found in the first homology module:

H1 := ker ∂1⧸im ∂2.

Recall example

Cycle x = −e2 + e4 + e5 is not a boundary of a face. But its multiple 2x is. Thus Z2

torsion.

Key idea

Torsion comes from a cycle of edges that is not a boundary, but its multiple is.

This is given by the image im ∂2.
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What does torsion mean?

In the RP2 example, the homology is H1(RP2) = Z2, even though it is constructed from
rotors (Z). This is torsion.

The Z2 means our rotor system encodes a qubit.

Key takeaway

In the general setting of rotors, we can use one kind of system to encode another kind.

Example: Klein bottle

A Klein bottle K2 has homology

H1(K2) = Z⊕ Z2.

A rotor code defined on a cellulation of K2 encodes a rotor and a qubit. [Ttt06]

Key observation

We can obtain mixed-dimension systems.
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Bibliography follows.

Thank you for your attention!
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